¿¬¼Ó°èÁøµ¿Çؼ®

2013³â 2Çб⠰­Àdz»¿ë ¹× ¿¹½ÀÀÚ·á (Adobe Acrobat PDF file)

          09¿ù 05ÀÏ : Introduction                                                                

                           8. Distributed-Parameter Systems: Exact Solutions

                              8.1 discrete & distributed systems. transverse vibration of strings

 

          09¿ù 07ÀÏ :    8.4a  free vibration of a string. the differential eigenvalue problem

                              8.5a  orthogonality of modes of string vibration. expansion theorem

                              6.   Elements of Analytical Dynamics  (summary)

 

          09¿ù 14ÀÏ :    8.2  derivation by the extended Hamilton's principle

                              8.A  axial vibration of rods

                              8.B  torsional vibration of circular shafts

  

          09¿ù 21ÀÏ :    8.3  bending vibration of beams      

                              8.4b free vibration of a beam in bending

                              8.5b orthogonality of modes of beam vibration. expansion theorem

 

          09¿ù 28ÀÏ :    <axial vibration of a thin rod with a lumped mass>     

                              8.6a systems with lumped masses at the boundaries

                              8.7a eigenvalue problem, expansion theorem

                              <bending vibration of a cantilever beam with a lumped mass>

                              8.6b systems with lumped masses at the boundaries

                              8.7b eigenvalue problem, expansion theorem

                              8.8   Rayleigh's quotient

 

          10¿ù 05ÀÏ :    8.9 response to initial excitation 

                              8.10  response to external excitation

                              8.11 systems with external forces at boundaries

 

          10¿ù 12ÀÏ :    8.C  vibration of uniform membranes 

                              8.D  vibration of uniform plates

 

          10¿ù 19ÀÏ :  Midterm Exam. (Chapter 8)

                              

          10¿ù 26ÀÏ :  9. Distributed-Parameter Systems. Approximate Methods

                              9.1  discretization by lumping

                              9.2 lumped-parameter method using influence coefficients

 

          11¿ù 02ÀÏ :    9.3 Holzer's method for torsional vibration 

                              9.4 Myklestad's method for bending vibration

 

          11¿ù 09ÀÏ :    9.A  general formulation of the eigenvalue problem 

                              9.5  Rayleigh's principle

                              9.6  the Rayleigh-Ritz method

 

          11¿ù 16ÀÏ :    (9.6  the Rayleigh-Ritz method) Examples    

                              9.7  an enhanced Rayleigh-Ritz method    

                              9.8  the assumed-modes method. system response

 

          11¿ù 23ÀÏ :    9.9 Galerkin's method                

                              9.10 the collocation method

                          10. The Finite Element Method

                              10.0 introduction

                              10.1 FEM as a Rayleigh-Ritz method

                              10.2 strings, rods, and shafts

                          

          11¿ù 30ÀÏ :    10.6 finite element modeling of trusses       

                              10.3 higher-degree interpolation functions

                              10.4 beams in bending vibration

                              10.7 finite element modeling of frames

                              10.8 system response by the FEM

 

          12¿ù 07ÀÏ :    10.A nondimensional natural coordinates              [°­ÀdzëÆ®]

                              10.B two-dimensional finite elements

                              10.C FEM applications

  

          12¿ù 14ÀÏ :  Final Exam. (Chapters 9 & 10)