6.9 Waves in a rod of circular cross-section

cylindrical coordinates :
displacements :
equations of motion

$$
\begin{align*}
& \nabla^{2} u-\cdots \quad=\frac{1}{c_{L}^{2}} \frac{\partial^{2} u}{\partial t^{2}} \tag{6.92}\\
& \nabla^{2} v-\frac{v}{r^{2}}+\frac{2}{r^{2}} \frac{\partial u}{\partial \theta}+\frac{1}{1-2 \nu} \frac{1}{r} \frac{\partial \Delta}{\partial \theta}=\frac{1}{c_{T}^{2}} \frac{\partial^{2} v}{\partial t^{2}} \tag{6.93}\\
& \nabla^{2} w+\cdots \quad=\frac{1}{c_{T}^{2}} \frac{\partial^{2} w}{\partial t^{2}} \tag{6.94}\\
& \nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}} \tag{6.95}\\
& \Delta=\nabla \cdot\left(u \mathrm{i}_{r}+v \mathrm{i}_{\theta}+w \mathrm{i}_{z}\right)=\frac{\partial u}{\partial r}+\frac{1}{r}\left(\frac{\partial v}{\partial \theta}+u\right)+\frac{\partial w}{\partial z}: \tag{6.96}
\end{align*}
$$

axisymmetric (axially symmetric) $\rightarrow \$ 6.10$
§2.13 summary of equations in cylindrical coordinates displacement potentials
(2.132) $u=\frac{\partial \phi}{\partial r}+\frac{1}{r} \frac{\partial \psi_{z}}{\partial \theta}-\frac{\partial \psi_{\theta}}{\partial z}$
(2.133) $v=\frac{1}{r} \frac{\partial \phi}{\partial \theta}+\frac{\partial \psi_{r}}{\partial z}-\frac{\partial \psi_{z}}{\partial r}$
(2.134) $\quad w=\frac{\partial \phi}{\partial z}+\frac{1}{r} \frac{\partial\left(\psi_{\theta} r\right)}{\partial r}-\frac{1}{r} \frac{\partial \psi_{r}}{\partial \theta}$
equations of motion
(2.135) $\quad \nabla^{2} \phi=\frac{1}{c_{L}^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}$
(2.139) $\quad \nabla^{2} \psi_{z}=\frac{1}{c_{T}^{2}} \frac{\partial^{2} \psi_{z}}{\partial t^{2}}$

$$
\begin{equation*}
\nabla^{2} \psi_{r}-\frac{\psi_{r}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial \psi_{\theta}}{\partial \theta}=\frac{1}{c_{T}^{2}} \frac{\partial^{2} \psi_{r}}{\partial t^{2}} \tag{2.137}
\end{equation*}
$$

$$
\begin{equation*}
\nabla^{2} \psi_{\theta}-\frac{\psi_{\theta}}{r^{2}}+\frac{2}{r^{2}} \frac{\partial \psi_{r}}{\partial \theta}=\frac{1}{c_{T}^{2}} \frac{\partial^{2} \psi_{\theta}}{\partial t^{2}} \tag{2.138}
\end{equation*}
$$

boundary conditions
(2.144) $\quad \sigma_{r}=\lambda \Delta+2 G \frac{\partial u}{\partial r}=\quad$ at $r=a$
(2.147)

$$
\begin{array}{ll}
(2.147) & \tau_{r \theta}=G\left[\frac{1}{r}\left(\frac{\partial u}{\partial \theta}-v\right)+\frac{\partial v}{\partial r}\right]= \\
(2.149) & \tau_{r z}=G\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial r}\right)= \tag{6.99}
\end{array}
$$

$$
\begin{array}{ll}
\text { at } r=0, & \text { (solid cross-section) } \\
\text { at } r=r_{i}, & \text { (hollow cross-section) }
\end{array}
$$

solutions of the form (

$$
\begin{array}{ll}
\phi(r, \theta, z, t)=\Phi(r) \Theta(\theta) \exp [i(k z-\omega t)] \\
\psi_{z}(r, \theta, z, t)=\Psi_{z}(r) \Theta(\theta) \exp [i(k z-\omega t)] \\
\psi_{r}(r, \theta, z, t)=\Psi_{r}(r) \Theta(\theta) \exp [i(k z-\omega t)] \\
\psi_{\theta}(r, \theta, z, t)=\Psi_{\theta}(r) \Theta(\theta) \exp [i(k z-\omega t)]
\end{array} \quad \Rightarrow \Rightarrow \begin{gathered}
\text { (6.105) (6.107) }
\end{gathered}
$$

6.10 Waves in a circular rod of solid cross-section

motions which are independent of θ but do depend on z

- torsional waves
- longitudinal waves
motions which depend on both z and
- flexural waves

6.10.1 torsional waves

circumferential displacement independent of $\theta \Rightarrow v(r, z, t)$ equation of motion

$$
\begin{align*}
& \text { (6.93) } \rightarrow \quad \nabla^{2} v-\frac{v}{r^{2}}=\frac{1}{c_{T}^{2}} \frac{\partial^{2} v}{\partial t^{2}}, \quad \nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial z^{2}} \\
& \Rightarrow \quad \frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}-\frac{v}{r^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=\frac{1}{c_{T}^{2}} \frac{\partial^{2} v}{\partial t^{2}}
\end{align*}
$$

separation of variables

$$
\begin{aligned}
& v(r, z, t)= \\
& R^{\prime \prime}+\frac{1}{r} R^{\prime}-\frac{1}{r^{2}} R-k^{2} R=-\frac{\omega^{2}}{c_{T}^{2}} R
\end{aligned}
$$

(i) if $k=\omega / c_{T}$

$$
R^{\prime \prime}+\frac{1}{r} R^{\prime}-\frac{1}{r^{2}} R=0
$$

$$
R(r)=\quad R \text { is } \quad \text { at } r=0 \rightarrow
$$

$$
\begin{equation*}
v(r, z, t)=A r \exp [i(k z-\omega t)] \tag{6.127}
\end{equation*}
$$

$$
\text { satisfies } \quad \tau_{r \theta}=G\left(\frac{\partial v}{\partial r}-\frac{v}{r}\right)=\quad \text { at } r=a \quad \text { automatically }
$$

lowest torsional mode
$c=\omega / k=$
(ii) if $k \neq \omega / c_{T}$

$$
\begin{array}{cl}
r^{2} R^{\prime \prime}+r R^{\prime}+\left(q^{2} r^{2}-1\right) R=0 & q^{2}=\frac{\omega^{2}}{c_{T}^{2}}-k^{2} \\
R(r)=A J_{1}(q r)+B Y_{1}(q r) & R \text { is finite (or 0) at } r=0 \rightarrow \\
v(r, z, t)=A J_{1}(q r) \exp [i(k z-\omega t)] & \text { at } r=a \\
\tau_{r \theta}=G\left(\frac{\partial v}{\partial r}-\frac{v}{r}\right)=0 & q a=
\end{array}
$$

higher torsional modes (

6.10.2 longitudinal waves

displacement components in the radial and axial directions independent of $\theta \Rightarrow$

$$
u=\frac{\partial \phi}{\partial r}-\frac{\partial \psi_{\theta}}{\partial z}, \quad w=\frac{\partial \phi}{\partial z}+\frac{1}{r} \frac{\partial\left(\psi_{\theta} r\right)}{\partial r} \quad \rightarrow
$$

equations of motion
(6.102) $\rightarrow \nabla^{2} \phi=\frac{1}{c_{L}^{2}} \frac{\partial^{2} \phi}{\partial t^{2}} \quad \Rightarrow \quad \frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{\partial^{2} \phi}{\partial z^{2}}=\frac{1}{c_{L}^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}$
(6.103) $\rightarrow \nabla^{2} \psi_{\theta}-\frac{\psi_{\theta}}{r^{2}}=\frac{1}{c_{T}^{2}} \frac{\partial^{2} \psi_{\theta}}{\partial t^{2}} \Rightarrow \frac{\partial^{2} \psi_{\theta}}{\partial r^{2}}+\frac{1}{r} \frac{\partial \psi_{\theta}}{\partial r}-\frac{\psi_{\theta}}{r^{2}}+\frac{\partial^{2} \psi_{\theta}}{\partial z^{2}}=\frac{1}{c_{T}^{2}} \frac{\partial^{2} \psi_{\theta}}{\partial t^{2}}$
separation of variables and solutions

$$
\begin{align*}
\phi(r, z, t) & =\Phi(r) \exp [i(k z-\omega t)] & \\
& =A J_{0}(p r) \exp [i(k z-\omega t)] & p^{2}=\frac{\omega^{2}}{c_{L}^{2}}-k^{2} \\
\psi_{\theta}(r, z, t) & =\Psi(r) \exp [i(k z-\omega t)] & \\
& =C J_{1}(q r) \exp [i(k z-\omega t)] & q^{2}=\frac{\omega^{2}}{c_{T}^{2}}-k^{2} \\
u(r, z, t) & = & \\
w(r, z, t) & = & \tag{6.129}
\end{align*}
$$

boundary conditions

$$
\begin{align*}
\sigma_{r} & =\lambda\left(\frac{\partial u}{\partial r}+\frac{u}{r}+\frac{\partial w}{\partial z}\right)+2 G \frac{\partial u}{\partial r}=\quad \text { at } \quad r=a \\
& \Rightarrow\left[-\frac{1}{2}\left(q^{2}-k^{2}\right) J_{0}(p a)+\frac{p}{a} J_{1}(p a)\right] A+\left[-i k q J_{0}(q a)+\frac{i k}{a} J_{1}(q a)\right] C= \\
\tau_{r z} & =G\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial r}\right)=\quad \text { at } \quad r=a \\
& \Rightarrow\left[-2 i k p J_{1}(p a)\right] A-\left(q^{2}-k^{2}\right) J_{1}(q a) C= \tag{2}
\end{align*}
$$

(1), (2) \Rightarrow nontrivial condition for A, C

$$
\begin{equation*}
\frac{2 p}{a}\left(q^{2}+k^{2}\right) J_{1}(p a) J_{1}(q a)-\left(q^{2}-k^{2}\right)^{2} J_{0}(p a) J_{1}(q a)-4 k^{2} p q J_{1}(p a) J_{0}(q a)= \tag{6.131}
\end{equation*}
$$

Pochhammer frequency equation

Fig. 6.13 dimensionless frequencies $\left(\omega a / \pi c_{T}\right)$ vs. dimensionless wavenumber $(k a / \pi)$
Fig. 6.14 dimensionless phase velocity $\left(c / c_{b}\right)$ vs. " " $(k a / 2 \pi)$
Fig. 6.15 dimensionless group velocity $\left(c_{g} / c_{b}\right)$ vs. " " $(k a / 2 \pi)$
ex.

6.10.3 flexural waves

non-axisymmetric motion
(skip)

6.11 Approximate theories for rods

wave motions in rods of arbitrary cross-sections can be described by one-dimensional approximate theories.
ex.

6.11.1 longitudinal motions

assumption: Cross-sectional area of the rod remains
$\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c_{b}^{2}} \frac{\partial^{2} u}{\partial t^{2}} \quad c_{b}^{2}=$
Axial shear modes and radial modes are

6.11.2 torsional motions

assumption: Transverse sections remain The motion consists of a rotation of the sections about the axis. (Both the warping and the in-plane motions are neglected)

$$
\begin{array}{cl}
\frac{\partial^{2} v}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} v}{\partial t^{2}} \quad c^{2}= \\
J: \text { torsional constant }(G J: \\
I: \text { moment of inertia }(J=I \text { for a circular cross-section) } \\
\text { radius of gyration } k \quad \Rightarrow \quad I= \\
c^{2}=\frac{D}{\rho A k^{2}} \quad \Rightarrow \quad c=\sqrt{\frac{D}{\rho A}} \frac{1}{k} \tag{6.142}
\end{array}
$$

6.11.3 flexural motions

assumption :

1. Dominant displacement component is parallel to the plane of symmetry.
2. Deflections are small and cross-sectional areas remain plane and normal to the neutral axis.

$$
\begin{equation*}
\frac{\partial^{2} w}{\partial t^{2}}+\frac{E I}{\rho A} \frac{\partial^{4} w}{\partial x^{4}}=0 \tag{6.143}
\end{equation*}
$$

A : cross-sectional area
I : second moment of the cross-sectional area about the neutral axis

$$
\begin{aligned}
& w(x, t)= B \exp [i k(x-c t)] \quad \Rightarrow \quad-k^{2} c^{2}+k^{4} \frac{E I}{\rho A}=0 \quad \Rightarrow \quad c^{2}= \\
& \Rightarrow \quad c= \sqrt{\frac{E}{\rho}} \sqrt{\frac{I}{A}} k \\
& c \propto k \quad \text { (phase velocity is proportional to the wavenumber) } \\
& \text { correct for small wavenumbers (long waves) }
\end{aligned}
$$

$$
\text { for a circular cylindrical rod }\left(I=\quad \Rightarrow \frac{I}{A}=\frac{1}{4}\right)
$$

$$
\begin{equation*}
c=\frac{1}{2} \sqrt{\frac{E}{\rho}} k \tag{6.145}
\end{equation*}
$$

6.12 Approximate theories for plates

6.12.1 flexural motions - classical theory
6.12.2 effects of transverse shear and rotary inertia
6.12.3 extensional motions

