진동 실험 (제9주 : 바닥가진 실험)

2018.11.6.

1. 바닥가진 개요

2. 운동방정식 및 해

3. 실험 장치

4. 측정 실습

바닥가진 개요

◆ 바닥 가진 (Base excitation, 기계진동학 2.4절) ■ 노면 또는 지지대의 운동으로 가진되어 발생하는 진동

• 자동차의 현가장치, 방진 테이블, 버스기사 의자 등

운동방정식 및 해 (1)

 $\ddot{x} + 2\varsigma \,\omega_n \,\dot{x} + \omega_n^2 \,x = 2\varsigma \,\omega_n \,\omega_b \,Y \cos \omega_b t + \omega_n^2 \,Y \sin \omega_b t$

운동방정식 및 해 (2)

✤ 하 (Solution)

▪ 특수해

$$x_p(t) = x_p^{(1)}(t) + x_p^{(2)}(t)$$

$$= \omega_n Y \left[\frac{\omega_n^2 + (2 \varsigma \omega_b)^2}{\sqrt{(\omega_n^2 - \omega_b^2)^2 + (2 \varsigma \omega_n \omega_b)^2}} \right]^{1/2} \cos(\omega_b t - \theta_1 - \theta_2)$$

$$X_{b} = Y \frac{\omega_{n} \sqrt{\omega_{n}^{2} + (2 \varsigma \omega_{b})^{2}}}{\sqrt{(\omega_{n}^{2} - \omega_{b}^{2})^{2} + (2 \varsigma \omega_{n} \omega_{b})^{2}}} = Y \frac{\sqrt{1 + (2 \varsigma r)^{2}}}{\sqrt{(1 - r^{2})^{2} + (2 \varsigma r)^{2}}}$$

운동방정식 및 해 (3)

변위 전달률 (Displacement transmissibility)
 바닥으로부터의 진동이 질량체로 얼마나 전달되는가를 나타냄

실험 장치 (1)

실험 장치 (2)

◆ 세부 모습

<질량부>

실험 장치 (3)

◆ DAQ블록 및 추가 질량

<추가 질량>

측정 실습 (1)

✤ 실험 방법 ① 실험 장치를 안전한 곳에 위치시킨다. ② DAQ블록에 가속도센서 출력 신호선을 연결한다.

(가진부 - White : +AIO, Green : AIO-)

(Black : GND, Red : +5V) (질량부 - White : +AI1, Green : AI1-)

측정 실습 (2)

③ DAQ블록과 컴퓨터를 케이블로 연결한다. ④ 바닥가진 실험 LabVIEW 프로그램을 실행한다.

측정 실습 (3)

⑤ 실험 장치에 전원을 연결한다.

⑥ Device Channel 설정을 아래와 같이 입력한다. (Shift + 마우스 오른쪽 버튼을 누른 후 "A"를 클릭하여 입력)

Device	Channe I	설정	채널설 ¹ ☆ Dev1/ai0,De	18 v1/ai1 _
1.0-				-2.46
(0.5-				-
<u>چ</u> 0.0-				
-0.5-				
-1.0-				

측정 실습 (4)

⑦ C드라이브에 test.txt 파일을 만들고 저장한다. (파일 내용은 0 엔터 0)

측정 실습 (5)

⑧ C드라이브 사용자 공용에 antm.txt 파일을 만들고 저장한다. (파일 내용은 0 엔터 0)

ⓒ ◯ ♥ ┃ ♥ 컴퓨터 → 로컬 디스크 (C:) → 사용자 →	공용 🕥 🔹 😽 공용 검
구성 ▼ 라이브러리에 포함 ▼ 공유 대상 ▼ 급 ☆ 즐겨찾기 ▲ 3600 Drive ● ● ● 다운로드 ● 방탕 화면 ● 공용 다운로드 ● 공용 만운로드 ● 바탕 화면 ● 공용 만운로드 ● 공용 바디오 ● 공용 바디오 ● 감이브러리 ● 공용 사진 ● 공용 사진 ● 라이브러리 ● 공용 사진 ● 공용 사진 ● 감이브러리 ● 공용 사진 ● 공용 사진 ● 감타 ● 감타 ● 감타 ● 가 ● 감타 ● 감타 ● 가 ● 감타 ● 감타 ● 감타 ● 감타 ● 감타 ● 가 ● 감타 ● 감타 ● 가 ● 감타 ● 감타 ● 감타 ● 감타 ● 감타 ● 감타 ● 감타 ● 감타 ● 감타 ● 감타	지 새 돌더 제 플더 제 플더 제 플더 제 플더 제 프일(F) 편집(E) 서식(O) 보기(V) 도움말(H) D O

측정 실습 (6)

⑨ 시스템 질량을 입력한다. (초기질량 0.184 kg) ⑩ 회전속도 컨트롤러로 가진부의 속도를 조절하고 RUN을 눌러 동작시킨다.

측정 실습 (7)

⑪ LabVIEW의 측정실행(♪) 버튼을 클릭하고 아래와 같은 파형이 측정되는지 확인한다.

12 출력 신호가 정상 상태가 되면, () 버튼, [데이터 수집 종료] 버튼, [프로그램 종료] 버튼, ()버튼을 클릭한다. 13 주파수비, 변위 전달률 등을 확인한다.

측정 실습 (8)

- 14 회전속도를 변화시키면서 11 ~ 13 과정을 반복하여, 주파수 비와
 변위 전달률을 파악한다.
- ① 추가 질량을 실험 장치에 설치하고 ⑨ ~ ④ 과정을 반복하여,
 측정을 반복한다.

요약

1. 바닥가진 개요

2. 운동방정식 및 해

3. 실험 장치

4. 측정 실습