[9.2절]

9.44 Centroid

(1) $A=(3.6 \mathrm{~cm})(0.5 \mathrm{~cm})=1.80 \mathrm{~cm}^{2}$
$\bar{x}=\frac{1}{2}(3.6 \mathrm{~cm})=1.80 \mathrm{~cm}$
$\bar{y}=\frac{1}{2}(0.5 \mathrm{~cm})=0.25 \mathrm{~cm}$
(2) $A=(0.5 \mathrm{~cm})(3.8 \mathrm{~cm})=1.90 \mathrm{~cm}^{2}$
$\bar{x}=\frac{1}{2}(0.5 \mathrm{~cm})=0.25 \mathrm{~cm}$
$\bar{y}=(0.5 \mathrm{~cm})+\frac{1}{2}(3.8 \mathrm{~cm})=2.40 \mathrm{~cm}$
(3) $A=(1.3 \mathrm{~cm})(1.0 \mathrm{~cm})=1.30 \mathrm{~cm}^{2}$

$\bar{x}=\frac{1}{2}(1.3 \mathrm{~cm})=0.65 \mathrm{~cm}$
$\bar{y}=(0.5 \mathrm{~cm})+(3.8 \mathrm{~cm})+\frac{1}{2}(1.0 \mathrm{~cm})=4.80 \mathrm{~cm}$
$\sum A=\left(1.80 \mathrm{~cm}^{2}\right)+\left(1.90 \mathrm{~cm}^{2}\right)+\left(1.30 \mathrm{~cm}^{2}\right)=5.00 \mathrm{~cm}^{2}$
$\Sigma(\bar{x} A)=(1.80 \mathrm{~cm})\left(1.80 \mathrm{~cm}^{2}\right)+(0.25 \mathrm{~cm})\left(1.90 \mathrm{~cm}^{2}\right)+(0.65 \mathrm{~cm})\left(1.30 \mathrm{~cm}^{2}\right)=4.56 \mathrm{~cm}^{3}$
$\Sigma(\bar{y} A)=(0.25 \mathrm{~cm})\left(1.80 \mathrm{~cm}^{2}\right)+(2.40 \mathrm{~cm})\left(1.90 \mathrm{~cm}^{2}\right)+(4.80 \mathrm{~cm})\left(1.30 \mathrm{~cm}^{2}\right)=11.25 \mathrm{~cm}^{3}$
$\bar{X}=\frac{\Sigma(\bar{x} A)}{\Sigma A}=\frac{4.56 \mathrm{~cm}^{3}}{5.00 \mathrm{~cm}^{2}}=0.912 \mathrm{~cm}, \quad \bar{Y}=\frac{\Sigma(\bar{y} A)}{\Sigma A}=\frac{11.25 \mathrm{~cm}^{3}}{5.00 \mathrm{~cm}^{2}}=2.25 \mathrm{~cm}$
$I_{x 1}=\bar{I}_{x 1}+A_{1} d_{1}^{2}$
$=\frac{1}{12}(3.6 \mathrm{~cm})(0.5 \mathrm{~cm})^{3}+\left(1.8 \mathrm{~cm}^{2}\right)(2.25-0.25 \mathrm{~cm})^{2}$
$=7.238 \mathrm{~cm}^{4}$
$I_{x 2}=\bar{I}_{x 2}+A_{2} d_{2}^{2}$
$=\frac{1}{12}(0.5 \mathrm{~cm})(3.8 \mathrm{~cm})^{3}+\left(1.9 \mathrm{~cm}^{2}\right)(2.25-1.9-0.5 \mathrm{~cm})^{2}$
$=2.329 \mathrm{~cm}^{4}$
$I_{x 3}=\bar{I}_{x 3}+A_{3} d_{3}^{2}$

$=\frac{1}{12}(1.3 \mathrm{~cm})(1.0 \mathrm{~cm})^{3}+\left(1.3 \mathrm{~cm}^{2}\right)(0.5+3.8+0.5-2.25 \mathrm{~cm})^{2}$
$=8.562 \mathrm{~cm}^{4}$
$I_{x}=I_{x 1}+I_{x 2}+I_{x 3}=\left(7.238 \mathrm{~cm}^{4}\right)+\left(2.329 \mathrm{~cm}^{4}\right)+\left(8.562 \mathrm{~cm}^{4}\right)=18.13 \mathrm{~cm}^{4}$
$I_{y 1}=\bar{I}_{y 1}+A_{1} d_{1}^{2}=\frac{1}{12}(3.6 \mathrm{~cm})^{3}(0.5 \mathrm{~cm})+\left(1.8 \mathrm{~cm}^{2}\right)(1.8-0.912 \mathrm{~cm})^{2}=3.363 \mathrm{~cm}^{4}$
$I_{y 2}=\bar{I}_{y 2}+A_{2} d_{2}^{2}=\frac{1}{12}(0.5 \mathrm{~cm})^{3}(3.8 \mathrm{~cm})+\left(1.9 \mathrm{~cm}^{2}\right)(0.912-0.25 \mathrm{~cm})^{2}=0.872 \mathrm{~cm}^{4}$
$I_{y 3}=\bar{I}_{y 3}+A_{3} d_{3}^{2}=\frac{1}{12}(1.3 \mathrm{~cm})^{3}(1.0 \mathrm{~cm})+\left(1.3 \mathrm{~cm}^{2}\right)(0.912-0.65 \mathrm{~cm})^{2}=0.273 \mathrm{~cm}^{4}$
$I_{y}=I_{y 1}+I_{y 2}+I_{y 3}=\left(3.363 \mathrm{~cm}^{4}\right)+\left(0.872 \mathrm{~cm}^{4}\right)+\left(0.273 \mathrm{~cm}^{4}\right)=4.51 \mathrm{~cm}^{4}$

