11. Biomechanical Movement Synergies

synergy = collaboration towards a

11.0 Introduction

The neuro-musculo-skeletal system is interconnected and integrated. ex. §1.2 neuro-musculo integration

to generate the moment-of-force profile at a given

- how the muscles at all joints contribute to the

- more than one simultaneous subtask of individual group of

biomechanics = major discipline that measures and analyses the total body in 3D \Rightarrow identify total body movement

1. total balance control in the plane during normal walking (§11.3)

2. total body responses to total arm voluntary movements in the plane (§11.3)

3. total body recovery mechanisms during standing (§11.2)

major examples of synergistic motor patterns, kinetic & EMG profiles

11.1 The Support Moment Synergy

\$5.2.6 (Fig. 5.14) $M_s = M_k(\text{ext.}) - M_a(\text{flex.}) - M_h(\text{flex.})$

Fig. 11.1 Ensemble averaged moment profiles (same subject, 9 days) $M_s = M_h(\text{ext.}) + M_k(\text{ext.}) + M_a(\text{ext.})$ $CV_h = 68\%, \quad CV_k = 60\%$ (CV = coefficient of variation \$2.3.3) $CV_{h+k} = 21\%, \quad CV_s = 20\%$

 \Rightarrow "trading off" between the \$ ex. The hip becomes more \$, while the knee becomes more

mean covariance between hip and knee over

$$\sigma_{hk}^{2} = \sigma_{h}^{2} + \sigma_{k}^{2} - \sigma_{h+k}^{2}$$
(11.1)
$$\sigma_{h}^{2}, \sigma_{k}^{2} : \text{ mean variance of hip, knee}$$

 σ_{h+k}^2 : mean variance of

maximum $\sigma_{hk}^2 = \sigma_h^2 + \sigma_k^2$ when $\sigma_{h+k}^2 =$

 M_h and M_k change out of phase, cancel each other out completely

% covariance
$$COV = \frac{\sigma_{hk}^2}{\sigma_h^2 + \sigma_k^2} \times 100\%$$
 (11.2)

ex. Fig. 11.2

day-to-day repeat	$COV_{hk} = 89\%,$	$COV_{ak} = 76\%$
trial-to-trial repeat	$COV_{hk} = 72\%,$	$COV_{ak} = 49\%$

11.1.1 relationship between M_s and vertical ground reaction force

support moment M_s = summation of the moments at all three joints : how much the total limb is pushing away from the ~ vertical ground reaction force

ex. Fig. 11.3 average F_y and average M_s for 19 adult subjects correlation coefficient r = 0.97

11.2 Medial/Lateral and Anterior/Posterior Balance in Standing

in the medial-lateral () direction

(§11.2.1)

(\$11.2.2)

standing =

and anterior-posterior () direction			
11.2.1 quiet standing				
inverted pendulum model (§5.2.9)				
$W(COM - COP) = I \alpha$, $d \alpha =$				
$\Rightarrow COP - COM = -\frac{I}{Wd}\ddot{x} = -K\ddot{x}$, ,			(11.3)
COP - COM : error signal for controllir	ng \ddot{x} (horizo	ontal	of the COM)	
\Rightarrow focus on how the CNS(?) control	s the COP	to achieve a sta	able balance	
quiet standing : COP is controlled by				
ankle dorsiflexors/plantorflexors	in the	direction		
hip abductors/adductors	in the	direction		
bilateral synergy :				
Fig. 11.4 left and right vertical grour	nd reaction	forces		
Fluctuations are virtually equ	ıal in	and out of	: -	
\Rightarrow Left (or right) hip moment is	with t	the left (or righ	t) vertical reaction	force.
hip abductor and adductor momenta				
availy acual in magnitude 1	1000	phone		
exactly equal in magnitude, i	LOU	phase		
\rightarrow accomprish road/unroad me	echamsin			
$COP = COM \Rightarrow -\ddot{\pi}$; accelerating	g the COM	toward a	position	
$COT COM \rightarrow x \cdot accelerating$	g the COM	toward a	position	
The CNS has to keep the left and ri	ght hip abd	uctors/adductors	S	
-	at a sma	all level of muse	cle tone	
so that the minuscule M/L sway resu	ults in small	synchronized f	iluctuations	
in hip frontal-plane r	noments suf	fficiently large	to maintain	
11.2.2 medial lateral balance control	during w	orkplace task	٢S	
Anterior/posterior () balance is contr	olled by the	e plantarflexors/	/dorsiflexors,	
medial/lateral () balance is controlled	l by the hip	abductors/addu	ictors.	

M/L balance (= load/unload mechanism)

increased abductor forces on one side

 \Rightarrow abductor forces on the contralateral side lift the pelvis/HAT mass (loading the ipsilateral side)

 \Rightarrow the contralateral side

move COP toward the ipsilateral foot

 \Rightarrow of COM toward the contralateral side

11.3 Dynamic Balancing during Walking

11.3.1 the human inverted pendulum in steady state walking

gait cycle (steady state walking) RHC - double - LTO - single - LHC - double - RTO - single - RHC support support support support trajectories of COP and COM (Fig. 11.7) - COP under the , COM of the - COM never passes within the base of the - COM moves forward passing just medial of the inside of each inverted pendulum model (§5.2.9) during each 40% -support period $(11.3) \quad COP - COM =$ \ddot{x} COP > COM \Rightarrow 0 : \ddot{x} COP < COM: 0 \Rightarrow trajectory of the swinging foot decides its future and for the next single-support period. its 11.3.2 initiation of gait from a stable balance condition during quiet to a state in about two steps

requires coordination of the A/P (plantarflexors/dorsiflexors) and the M/L (hip abductrs/adductors) Fig. 11.8

11.3.3 gait termination

from a steady state

to a stable within two steps

requires balance control

- forward of the body must be removed
- COP must be controlled to a position slightly ahead of the as the COM comes to a near stop.

Fig. 11.9